


PUBLIC CAPITAL SKILL-COMPLEMENTARITY AND INEQUALITY

Christopher Clarke Raymond Batina Washington State University May 2017

INTRODUCTION

There has been a decrease in the relative public capital stock.

Note: Public capital is net military assets and constant cost.

Note: Public capital and GDP are constant cost. Public Capital is net military assets.

Likewise, there has been an increase in the skilled wage gap.

Source: Current Population Survey

HYPOTHESIS

•Public capital complements low-skilled labor more than high-skilled labor.

•Ex: bridges & truck drivers, water treatment & laborers (Flint, MI).

•Decreases in relative public capital increases $\frac{MPL_S}{MPL_u}$.

•This explains some of the increase in wage inequality.

LABOR COMPLEMENTARITY WITH PUBLIC CAPITAL — MIXED RESULTS

	Nadiri & Mamuneas (1996)	Cohen & Paul (2004)		
		Intra-state	Inter-state	
manufacturing and services	Substitute	Complement	Complement	
non-manufacturing Complement industries.		Substitute	Complement	

We are the first to study public capital complementarity with skilled labor.

(PRIVATE) CAPITAL-SKILL HYPOTHESIS

- Griliches (1969) first to show capital complements skilled labor while substituting unskilled labor.
 Krusell, Ohanian, Ríos-Rull, & Violante (2000) -- KORV
- •Estimate a nested CES production function

$$\bullet Y = k_s^{\alpha} \left[\mu n^{\theta} + (1-\mu) \left(\lambda k_e^{\rho} + (1-\lambda) s^{\rho} \right)^{\frac{\theta}{\rho}} \right]^{\frac{1-\alpha}{\sigma}}$$

•The elasticity of substitutions between k_e and n is $\sigma_{k_e n} = \sigma_{sn} = \frac{1}{1-\theta}$.

•Additionally,
$$\sigma_{k_es} = \frac{1}{1-\rho}$$
.

•Capital-skill complementary requires that $\sigma_{k_en} > \sigma_{k_es}$.

KORV (2000) RESULTS

•Capital-skill complementarity:

$$.401 = \sigma > \rho = -.495.$$

 $1.67 = \sigma_{k_e n} > \sigma_{k_e s} = .67$

•Holding k_e at constant 1975 levels, the wage premium only increases by 8%, rather than 18%.

MODEL

$$Y = At \left[a \left[b \left[cK^{\theta} + (1-c)N^{\theta} \right]^{\frac{\rho}{\theta}} + (1-b)G^{\rho} \right]^{\frac{\nu}{\rho}} + (1-a)S^{\nu} \right]^{\frac{1}{\nu}},$$

•Three-layer nested CES production function

- •*Y Private Output*
- •*K Private Capital Services*
- •G Public Capital
- •N Unskilled Labor
- $\bullet S$ Skilled Labor

CES requires some of the six elasticities of substitution to be equal to each other.

I determine which model to use by AIC.

	(((G,K)S)N)	(((G,K)N)S)	(((G,S)N)K)	(((G,S)K)N)	(((K,S)G)N)	(((K,S)N)G)	(((G,N)S)K)	(((G,N)K)S)	((K,N)S)G)	((K,N)G)S)	(((N,S)G)K)	(((N,S)K)G)
σ_{GK}	*	*	#	§	§	#	#	§	#	§	#	#
σ_{GS}	§	#	*	*	§	#	§	#	#	#	§	#
σ_{KS}	§	#	#	§	*	*	#	#	§	#	#	§
σ_{GN}	#	§	§	#	#	#	*	*	#	§	§	#
σ_{KN}	#	§	#	#	#	§	#	§	*	*	#	§
σ_{SN}	#	#	§	#	#	§	§	#	§	#	*	*

Note: #, *, and § represent elasticities that are equal to each other.

ESTIMATION

Following Duffy, Papageorgiou, & Pérez-Sebastian (2004),

I employ non-linear least squares.

Total factor productivity, A, is represented by a time trend

Standard errors are Newey-West correcting for autocorrelation.

S.E. for σ are calculated using the Delta Method.

Partial equilibrium production function.

- Reduces the number of parameters substantially.
- We have a small sample (50 observations)

PROBLEMS

Labor quality per hour is unobservable. KORV (2000) simulate efficiency units.

 $s_t \equiv \varphi_{st} h_{st}$

 h_{st} is number of hours worked

 φ_{st} is human capital or skill-specific technology level

Follows the stochastic process

 $\varphi_t = \varphi_0 + \gamma t + \omega_t$

For a nonlinear latent process, OVKR (1998) find Simulated Pseudo-MLE is superior.

P-MLE relies on first and second moments of data. Robust to incorrectly specified likelihood function.

DATA

Public Capital

BEA Standard Fixed Asset Tables

Private Output and Private Capital

BLS Multifactor Productivity Series.

Labor input

- Consumer Population Survey (CPS) accessed through IPUMS (Flood, King, Ruggles, & Warren, 2015).
- Skilled Labor is defined as "completed four years of college."

MODEL SELECTION

Four of the combinations assume $\sigma_{G,N} = \sigma_{G,S}$.

Model	AIC	BIC
1	518.1	531.5
2	515.5	523.1
3	685.6	691.3
4	362.4	368.1
5	285.0	290.8
6	283.8	291.5
7	273.3*	279.0*
8	273.5	279.3

RESULTS

	$\left[\left(\left(K,N\right)G\right)S\right]$	$\left[\left(\left(\boldsymbol{G},\boldsymbol{N}\right)\boldsymbol{K}\right)\boldsymbol{S}\right]$
σ_{GS}	1.46	3.07
	(0.377)	(1.068)
σ_{GN}	0.42	0.30
	(0.078)	(0.229)

Public Capital complements unskilled labor more than skilled labor

ROBUSTNESS

 $\sigma_{GS} > \sigma_{NS}$ in six out of eight model selections In three of these, the difference is greater than the respective 95% confidence regions of the point estimates.

WHERE TO NEXT - VARYING INPUT TYPES

Public Capital

Transportation, Utilities, Government Buildings

•Labor

- Different education thresholds.
- Split labor by occupation or industry.
 - Orak (2017) "Capital-Task Complementarity"
- Gender

WHERE TO NEXT - ESTIMATION

Simulated P-MLE

Match model with labor share, wage ratio, and no arbitrage condition

•Simple general equilibrium model

WHERE TO NEXT — HUMAN CAPITAL AGGREGATION

•Jones (2014) calculates a generalized aggregator subsuming the linear method; such as in KORV (2000).

•Linear aggregation assumes perfect substitution between different levels of human capital.

• Jones allows for scarcity effect
$$\frac{\partial MPL_u}{\partial L_u} < 0$$

• complementary effect $\frac{\partial MPL_u}{\partial L_s} > 0$.