Assessing Post-Harvest Labor Shortages, Wages, and Welfare

Andrew J Cassey Kwanyoung Lee Jeremy Sage Peter Tozer Washington State University

kwan.lee@wsu.edu

April 24, 2015

Thesis

How do post-harvest labor shortages affect U.S. pome (apple) and prunus (peach) industries and economic welfare?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thesis

How do post-harvest labor shortages affect U.S. pome (apple) and prunus (peach) industries and economic welfare?

Importance

 \Box Large total value: \$5 billion in 2011

□ Geographic spread: 32 states for pome, 23 states for prunus

Thesis

How do post-harvest labor shortages affect U.S. pome (apple) and prunus (peach) industries and economic welfare?

□ Importance

□ Large total value: \$5 billion in 2011

□ Geographic spread: 32 states for pome, 23 states for prunus

Method - Two stage Muth model (Gunter et al, 1992)

□ Partition of labor force, skilled and unskilled

□ 5.4% fruit demand increase shock, -7% unskilled labor shock

 $\hfill\square$ Compare post shock CE to low fixed wage labor shortage

] Thesis

How do post-harvest labor shortages affect U.S. pome (apple) and prunus (peach) industries and economic welfare?

□ Importance

□ Large total value: \$5 billion in 2011

□ Geographic spread: 32 states for pome, 23 states for prunus

□ Method - Two stage Muth model (Gunter et al, 1992)

□ Partition of labor force, skilled and unskilled

□ 5.4% fruit demand increase shock, -7% unskilled labor shock

 $\hfill\square$ Compare post shock CE to low fixed wage labor shortage

Result

Firms are better off with low fixed wage

Prunus more severely affected by shocks

□ Pre-harvest labor shortages (Richard and Patterson, 1998)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 \Box Pre-harvest labor shortages (Richard and Patterson, 1998)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Post-harvest labor force

- Sorting
- Packing
- Moving
- Distributing
- Marketing

□ Address importance of the post-harvest process in horticultural industry by analyzing the impact of post-harvest labor shortage on U.S. pome and prunus production

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Address importance of the post-harvest process in horticultural industry by analyzing the impact of post-harvest labor shortage on U.S. pome and prunus production
- Partitioning labor force into skilled and unskilled, analyzing post-harvest labor market

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Address importance of the post-harvest process in horticultural industry by analyzing the impact of post-harvest labor shortage on U.S. pome and prunus production
- Partitioning labor force into skilled and unskilled, analyzing post-harvest labor market
- Provide how much a wage increase is needed to meet the equilibrium wage in the post-harvest labor market

□ Two-stage Muth model (Gunter et al 1992)

] Two-stage Muth model (Gunter et al 1992)

Assumptions

□ Two inputs only: skilled labor, unskilled labor. No capital

- □ Pome and prunus draw from same labor markets
- \Box All agents are price takers

] Two-stage Muth model (Gunter et al 1992)

Assumptions

Two inputs only: skilled labor, unskilled labor. No capital

- Pome and prunus draw from same labor markets
- □ All agents are price takers
- First Stage
 - □ Calculate pre-shock equilibrium
 - □ Apply 2 shocks to model
 - □ Calculate wage changes of skilled and unskilled

] Two-stage Muth model (Gunter et al 1992)

Assumptions

- Two inputs only: skilled labor, unskilled labor. No capital
- Pome and prunus draw from same labor markets
- □ All agents are price takers
- First Stage
 - □ Calculate pre-shock equilibrium
 - Apply 2 shocks to model
 - □ Calculate wage changes of skilled and unskilled
- Second Stage
 - □ Insert the calculated wages into each commodity market

Calculate production changes for each market

] Two-stage Muth model (Gunter et al 1992)

Assumptions

- Two inputs only: skilled labor, unskilled labor. No capital
- Pome and prunus draw from same labor markets
- □ All agents are price takers
- First Stage
 - □ Calculate pre-shock equilibrium
 - Apply 2 shocks to model
 - □ Calculate wage changes of skilled and unskilled
- Second Stage
 - □ Insert the calculated wages into each commodity market
 - □ Calculate production changes for each market
- □ Compare post shock CE to fixed wage scenario

- U.S. National data
- 2002 2010
- □ Not commodity specific

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 🗆 U.S. National data
- 2002 2010
- Not commodity specific
- □ Partition into pre- and post-harvest occupations
- □ Further refine the employment and wage data by occupation

 $\hfill\square$ Partition post-harvest occupations by skill

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \Box Source: Onetonline.org

□ Partition post-harvest occupations by skill

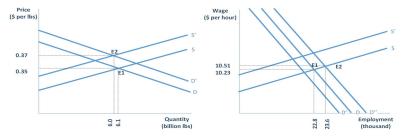
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \Box Source: Onetonline.org
- $\hfill \Box$ Five categories based on skilled needed
 - □ Level 1-2: unskilled
 - □ Level 3-5: skilled

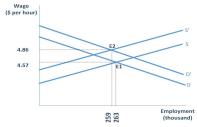
- □ Pome and prunus industries
- \Box Price and output data for apples and peaches (USDA)
- □ Total fresh fruit production delivered to consumers, less than the harvest quantity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

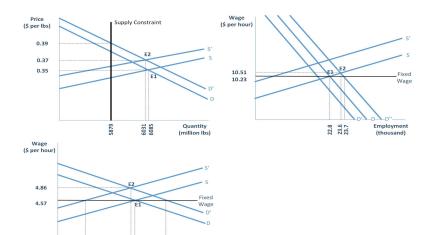
Parameter	Description			
η_{pome}	Price elasticity of the industry demand for pome	-0.83 ^a		
η_{prunus}	Price elasticity of the industry demand for prunus	-3.54^{b}		
$\eta_{pome,prunus}$	Cross Price elasticity of the demand for pome to prunus	0.05 ^c		
$\eta_{\it prunus,pome}$	Cross Price elasticity of the demand for prunus to pome	0.46 ^c		
e_s	Supply elasticity for skilled labor input	0.73 ^d		
e_u	Supply elasticity for unskilled labor input	3.37 ^e		
σ	Elasticity of substitution between	1.10^{f}		
	skilled labor input and unskilled labor input			


Sources: ^aLin et al (2009), ^b Gunter et al (1992), ^c Price (1979), ^d Duffield(1990), ^e Perloff (1991), ^f Card and Lemieux (2001)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


\Box Gallardo et al (2014)

- □ Shock the demand curve for the final output by 5.4% for both the pome and prunus industry
 - Population growth
 - □ Increase demand and price
- \Box Shock the supply of unskilled labor in 7%
 - Projected immigration law
 - Decrease supply of unskilled labor and increase wage


Commodity Market Graph: Pome Market

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Commodity Market Graph: Pome Market with Fixed Wage

Employment

(thousand)

279

233

Commodity Market Table

		Pome			Prunus	
Surplus	Before Shock	After shock	After shock (fixed wage)	Before Shock	After Shock	After Shock (fixed wage)
		Commo	dity Market (n	villion \$)		
Consumers	1369.1	1344.9	1278.7	80.9	77.1	61.9
Firms	593.3	582.0	646.7	29.9	28.2	42.5
Total	1962.4	1926.9	1925.4	110.8	105.3	104.4
		Skilled Labor	Market(thouse	und\$ per hour)		
Skilled	88.3	94.8	88.3	133.7	140.2	133.7
Firms	831.6	892.7	898.1	831.6	870.8	876.7
Total	919.9	987.5	986.4	965.3	1011.0	1010.4
		Unskilled Labo	r Market(thou:	sand\$ per hour)		
Unskilled	384.2	372.6	301.4	104.2	86.3	44.5
Firms	505.5	490.2	552.8	132.8	138.3	162.4
Total	889.7	862.8	854.2	237.0	224.6	206.9
		Tote	al Firms (milli	on \$)		
Total Firms	594.6	583.4	648.2	30.9	29.2	43.5

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Conclusion

\Box Fixed wages create

□ Higher prices and less consumption by consumers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Deadweight loss
- □ Firms increase surplus and are better off

Conclusion

□ Fixed wages create

- □ Higher prices and less consumption by consumers
- Deadweight loss
- □ Firms increase surplus and are better off
- Pome industry adapts to shocks better
 - Pome industry is larger and more inelastic demand
 - Pome industry better adjusts to shock because able to pass on price increase

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Pome employment less affected

Conclusion

☐ Fixed wages create

- □ Higher prices and less consumption by consumers
- Deadweight loss
- □ Firms increase surplus and are better off
- Pome industry adapts to shocks better
 - Pome industry is larger and more inelastic demand
 - Pome industry better adjusts to shock because able to pass on price increase

Pome employment less affected

ACKNOWLEDGEMENTS

- Financial support from WSU Agricultural Research Center Project #0540
- Financial support from USDA- Agricultural Marketing Service: Federal-State Marketing Improvement Program 2013